1 st YEAR

USV.FIM.II.DF.01.01 Calculus (Autumn/1)
4 hours per week; 14 weeks/1st semester; 28C/28S; ECTS credits: 5
Basics of calculus: infinite series, differentiation and partial derivatives of functions of several variables, applications of differentiation, multiple integrals, line integrals, surface integrals, differential equations of first order.

USV.FIM.II.DF.01.02 Algebra, Analytical and Differential Geometry (Autumn/1)
4 hours per week; 14 weeks / 1st semester; 28C/28S; ECTS credits: 5
The course presents the most important concepts, results and mathematical methods in algebra, analytical and differential geometry useful in the perception of physical phenomena and other mathematical courses. An introduction in linear algebra (vector spaces, linear transformations, eigenvalues, quadratic forms, Euclidian spaces), analytical geometry in two or three dimensions, applications of calculus to the study of the geometry of curves and surfaces in Euclidean space.

USV.FIM.II.DD.01.03 Science and Engineering of Materials (1) (Autumn/1)
3 hours per week; 14 weeks /1st semester; 28C/14L, ECTS credits: 4

USV.FIM.II.DF.01.04 Applied Informatics (Autumn/1)
3 hours per week; 14 weeks/1st semester; 28C/14L; ECTS credits: 3
Operating Systems, architecture of the computer, the main aspects of Office package, the main concept of the algorithms and programming.

USV.FIM.II.DF.01.05 Chemistry (Autumn/1)
4 hours per week; 14 weeks / 1st semester: 28C/28L; ECTS credits: 3
Introduction to Chemistry: definition, chemistry classifications, atom structure, Chemical bonds, General properties of substances (physical, mechanical, chemical, electrical and magnetic) solutions and disperse systems, industrial water, electrochemistry: electrolysis and laws of electrolysis, the chemical Power Sources, Corrosion and anticorrosive protection of metals and alloys, fuels and lubricants.

USV.FIM.II.DC.01.06 Descriptive geometry (Autumn/1)
3 hours per week; 14 weeks / 1st semester: 14C/28L; ECTS credits: 4
The objectives of this discipline are to provide students a clearer picture of bodies in space through a 2D representation using the projection method and vice versa. Descriptive geometry is a science of the drawing deals with the following main topics: Orthographic drawing; Projection systems; Dihedral and trihedral representation of the point, line and plane; Traces of straight line and plane; Straight line and plane in particular positions; Relative position two straight lines; Intersection between lines and/or planes; Folding line and rotation methods; True length of lines; Measurement of angles; Geometric representation of a prism, pyramid, cone and cylinder; Intersections of polyhedrons with lines and planes; Development drawing. Sections through a pyramid, cone cylinder and sphere.

USV.FIM.II.DC.01.07 Economics (Autumn/1)
2 hours per week; 14 weeks/1st semester: 28C; ECTS credits: 3

USV.FIM.II.DC.01.08 Physical education (1) (Autumn/1)
1 hour per week; 14 weeks /1st semester: 28S; ECTS credits: 1
Maintaining optimal health status of students and increase their adaptability to environmental factors; Harmonization of their own physical development and prevention of possible deviations from the installation; Expansion of its own fund basic motor skills, basic applicative and basic sports ones and development of motor skills related; Independent practice of physical exercises, games and various sports; The expression of team spirit and competition, according to a system of rules accepted.
USV.FIM.II.DC.01.09
English I (Autumn/1)
2 hours per week, 28S: 14 weeks / 1st semester; ECTS credits: 2
Multiple general assessment test; An overview of main grammar issues, based on TOEFL and Cambridge tests - vocabulary reminder (at least 14 separate seminars); Model Test 5, TOEFL Essential English; Structure and written expression; Vocabulary and Reading Comprehension (False friends approach); TOEFL Essential English 6 – transition to technical terms; TOEFL 7 – Tenses; Science and Technology; The Importance of the Research Theorist; The impact of technology on everyday life

USV.FIM.II.DD.02.10
Mechanics (Spring/1)
5 hours per week; 14 weeks / semester: 28C/28S/14L; ECTS credits: 6
Vectors; Statics of particles; Equivalent systems of forces; Equilibrium of rigid bodies; Friction; Centers of gravity; Moments of inertia; Kinematics of particles; Relative motion; Kinematics of rigid bodies; Dynamics of particles; Dynamics of rigid bodies

USV.FIM.II.DD.02.11
Science and Engineering of Materials (2) (Spring/1)
4 hours per week; 14 weeks / 2nd semester: 28C/28L; ECTS credits: 5

USV.FIM.II.DF.02.12
Physics (Spring/1)
4 hours per week; 14 weeks / 2nd semester: 28C/28L; ECTS credits: 5
Overview of the main natural phenomena in terms of: mechanics, electromagnetism, optics, atomic physics and, quantum mechanics. Each domain shows the student’s theoretical and experimental method to understand the main phenomena for the mechanical engineer.

USV.FIM.II.DF.02.13
Numerical Methods (Spring/1)
4 hours per week; 14 weeks / 2nd semester: 28C/28L; ECTS credits: 4
The course elaborates on the following main topics: basic notions in error theory, algorithms and representation of algorithms, numerical methods for solving algebraic and transcendental equations, numerical solution of systems of linear equations, numerical approximation of real functions, Lagrange interpolation, Newton interpolation polynomial, spline interpolation, regression approximation, derivation and numerical integration, numerical solution of differential equations, experimental data processing, implementation of algorithms in Mathcad.

USV.FIM.II.DC.02.14
Communication (Spring/1)
2 hours per week; 14 weeks / 2nd semester: 28S; ECTS credits: 3
Objectives of effective Communication; Barriers in Communication; Metacommunication - nonverbal communication; Message planning; Intra C, inter C, group C. and mass C. Communication as a transactional process; Negotiation and manipulative techniques; The interview, the CV/resume; Frequent mistakes in today’s vernacular as a result of borrowings

USV.FIM.II.DF.02.15
Engineering drawing (Spring/1)
4 hours per week; 14 weeks / 2nd semester: 28C/28L; ECTS credits: 5
Drawing elements, Types of drawings, Projection, Sectioning, Dimensioning, Detail drawing, Assembly drawing

USV.FIM.II.DC.02.16
Physical education(2) (Spring/1)
1 hour per week; 14 weeks / 2nd semester: 14S; ECTS credits: 1
Maintaining optimal health status of students and increase their adaptability to environmental factors; Harmonization of their own physical development and prevention of possible deviations from the installation; Expansion of its own fund basic motor skills , basic applicative and basic sports ones and development of motor skills related; Independent practice of physical exercises, games and various sports; The expression of team spirit and competition, according to a system of rules accepted.

USV.FIM.II.DC.02.17
English 2 (Spring/1)
2 hours per week, 14 weeks / 2nd semester: 28S; ECTS credits: 2
Capability to explain and interpret ideas, projects; Build-up of pros and cons in a debate; Identifying the logical sequence among a text parts and the ability to extract the relevant information from that text; Accurate reception of oral or written messages in various communicational stances.
Accurate message output, both written and oral, regarding technical issues; Identifying key elements in a standard speed message; Building interaction in both written and oral communication, building the ability to defend an issue clearly and convincingly in sundry circumstances regarding familiar scientific and technical topics; Transfer and mediation of oral or written messages on diverse topics.

2nd YEAR

USV.FIM.II.DF.03.01
Special Mathematics (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/28S; ECTS credits: 5

USV.FIM.II.DD.03.02
Strength of materials (1) (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/28S; ECTS credits: 5

USV.FIM.II.DD.03.03
Mechanisms (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/14S/14L;
ECTS credits: 5
Mobility; degree of freedom, classification of mechanisms;
planar, spherical, and spatial mechanisms; positional, velocity,
and acceleration analysis; lower joint mechanisms vectorial
loop method for planar kinematics; Hartenberg-Denavit
convention; kinematics of spatial linkages; cam mechanisms;
displacements diagram, characteristic geometrical parameters;
cam profile tracing; pressure angle; minimum radius-of-
curvature; spur gears, fundamental law of toothed gearing; the
manufacture of gear teeth; interference and undercutting;
contact ratio; helical gears, contact of helical gear teeth;
herringbone gears; crossed-axis helical gear; bevel gears;
crown and face gears; hypoid gears; basics of worm and worm
gears; mechanisms train; dynamics of machine; forces acting
upon machine elements; condition of equilibrium; inertia force
and d’Alembert principle in kinetostatics; static and dynamic
balancing of machines; cam dynamics; dynamic equation of
flywheels; centrifugal governors; governors as a dynamic
system; elementary theory of gyroscopes;

USV.FIM.II.DD.03.04
Tolerances and dimensional control (Autumn/2)
3 hours per week; 14 weeks / 3rd semester: 28C/14L;
ECTS credits: 4
This course familiarizes the students with the prescription and
control of the dimensional and geometrical precision of the
machine elements. It presents the dimensional and geometrical
precision, dimensions’ chains, basic notions concerning the
dimensional and geometrical measurements and control,
statistical control methods.

USV.FIM.II.DD.03.05
Materials Technology 1 (Autumn/2)
3 hour per week; 14 weeks / 3rd semester: 28C/14L;
ECTS credits: 4
Technological process; Alloy casting, Materials plastic
deformation; Metallic materials welding; Cutting metal
materials by thermal processes. Ceramic material processing
technologies; Plastics processing technologies; Composite
materials manufacturing technology; Nonconventional
technologies.

USV.FIM.II.DF.03.06
Computer Aided Graphics (Autumn/2)
5 hours per week; 14 weeks / 3rd semester: 28C/42L;
ECTS credits: 5
Introduction to AutoCAD, Drawing convention, Interfacing
with AutoCAD, Drawing objects, Creating a new drawing,
Drawing, editing, hatching, dimensioning commands, 2D
applications

USV.FIM.II.DC.03.07
Physical education (3) (Autumn/2)
1 hour per week; 14 weeks / 3rd semester: 14S;
ECTS credits: 1
In practical work find content specific learning units
gymnastics, athletics, team sports. From basic gymnastics
using operational means to organize your lesson to influence
selective locomotor training and the athletic exercises of the
body for exercise.

USV.FIM.II.DD.04.09
Mechanisms (Spring/2)
2 hour per week; 14 weeks / 4th semester: 28P;
ECTS credits: 3
Applying of geometrical method for kinematical analysis of a
planar mechanism; velocity and acceleration polygon
methods, vectors loop method for planar kinematics; design of
cam in a mechanism with imposed motion law of the follower;

USV.FIM.II.DD.04.10
Strength of materials (2) (Spring/2)
5 hours per week; 14 weeks / 4th semester: 28C/28S/14L;
ECTS credits: 5
Bending, Pure bending of straight beams. Navier's formula.
Tangential stresses in sections subject to simple bending.
Juravski's formula. Reflections of straight beams subjected to
bending. Energy methods in determining displacements.
Castigliano's theorem. The theorem of Mohr and Maxwell.
Vereseceghin's method. Statically indeterminate beams.
Buckling beams. Dynamic action of forces. Fatigue of
materials. Applications of plasticity theory.

USV.FIM.II.DD.04.11
Thermotechnics and thermal equipments (Spring/2)
4 hours per week; 14 weeks / 4th semester: 28C/14S/14L;
ECTS credits: 4
Basic Concepts and Definitions: Thermodynamic Systems and
Surroundings, Types of Thermodynamic Systems, Thermodynamic
Energy, Specific Enthalpy, Work, Heat, Entropy, Ideal Gas,
Thermodynamic systems and processes; Isochoric Process,
Isobaric process, Isentropic Process, Polytropic Process,
Throttling Process, Second Law of Thermodynamics, Methods
of Thermodynamics, Third Law of Thermodynamics, Property
diagrams and steam tables: Property Diagrams, Pressure-
Temperature (P-T) Diagram, Pressure-Specific Volume (P-v),
Diagram Pressure-Enthalpy (P-h) Diagram Enthalpy-
Temperature (h-T), Diagram, Temperature-Entropy (T-s)
Diagram, Enthalpy-Entropy (h-s) or Mollier Diagram, Steam
Tables, The Wet Air, Gas Dynamics, Heat transfer
terminology: Heat and Temperature, Heat and Work, Modes
of Transferring Heat, Heat Flux, Thermal Conductivity, Log
Mean Temperature Difference, Convective Heat Transfer
Coefficient, Overall Heat Transfer Coefficient, Bulk
Temperature, Conduction heat transfer, Convection heat
transfer, Radiant heat transfer, Thermal machines.

USV.FIM.II.DD.04.12
Fluids mechanic and hydraulic equipments (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L;
ECTS credits: 4
Introduction and fundamental concepts, Fluid statics,
Fundamental concepts used in fluid flow analysis, The energy
equation, Inviscid incompressible fluid flow, Inviscid
compressible flow, The momentum equation, Dimensional
analysis and similitude, Incompressible viscous flow,
Definition and classification of hydro-pneumatic machines,
Efficiency of hydro-pneumatic machines, The basic equation
of turbo-machinery, Pumps and hydraulic turbines,
Theoretical and experimental determination of the energy
characteristic curves.

USV.FIM.II.DD.04.13
Materials Technology 2 (Spring/2)
4 hours per week; 14 weeks / 4th semester: 28C/28L;
ECTS credits: 4
Ecologic casting technologies; Plastic deformation high
performance technologies; Modern welding technology;
Advanced processing techniques.

USV.FIM.II.DD.04.14
Electrotechnics and electrical machines (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L;
ECTS credits: 3
Periodic electrical signals, Electrical circuits, Laws, theorems and methods of analysis of electrical circuits, Magnetic circuits, Electrical circuit analysis, Electrical transformer, Asynchronous electric machine, DC electric machine, Synchronous electric machine.

USV.FIM.II.DD.04.15
Electronics (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L; ECTS credits: 3
Introduction in Electronics; Concepts of semiconductor physics; Pn junction; Semiconductor diodes; Types of diodes; Bipolar transistor; Field Effect Transistors; MOS transistor; Other devices with junctions; Optoelectronic semiconductor devices; Regime of switching semiconductor devices; Diode Circuits; Amplifiers; Reaction in amplifiers; Harmonic oscillators

USV.FIM.II.DC.04.16
Physical education (4) Spring/2
1 hour per week; 14 weeks / 4th semester:14S; ECTS credits: 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using operational means to organize your lesson to influence selective locomotor training and the athletic exercises of the body for exercise.

USV.FIM.II.DD.04.17
Practical training (Spring/2)
90 hours; 1.5 week; 14 weeks / 2nd semester: ECTS credits: 4
Identification of manufacturing processes; Identification of fabricated products and materials; Identification of main technological route; Identification of technological equipments; Consolidation of theoretical knowledge; Training of practical skills

3rd YEAR

USV.FIM.II.DD.05.01
Machine Elements 1 (Autumn/3)
3 hours per week; 14 weeks / 5th semester: 28C/14S; ECTS credits: 3
This is the first part of machine elements course, concerning basics on classical design of mechanical parts, such as statics and dynamics of mechanical elements, failure criteria, tribology elements, fiability, mechanical choice criteria and so on. Also elements of mechanical transmissions construction and design (gears, belts transmissions, chain and belts variators, friction variators, chain transmission) are presented too.

USV.FIM.II.DD.05.02
Machine Elements/Project (Autumn/3)
1 hours per week; 14 weeks /5th semester: 14P; ECTS credits: 2
Students must design single stage reducer gear. Starting from a given material, all steps are followed so that the gear to output a requested torque and speed. The designed reducer gear must use spur gears and an external V belt transmission. The belt transmission, gears geometry and shafts dimensions must be calculated. The shafts reliability is checked at fatigue, vibration and strain. The gear’s transmission elements must be calculated. The reducer gear housing must be designed and the thermal regime verified. The projects must contain drawings with bi-dimensional projections for a V belt driving gear, a spur gear, a shaft, the housing, and reducer assembly

USV.FIM.II.DD.05.03
Fundamentals of cutting and surface generation (Autumn/3)
4 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 4
The fundamentals of cutting, the physics and mechanics of the cutting process, generating theoretical and real surfaces on machine tools (elements regarding the structure of the technological system, the role of its components in the cutting process, the chip formation mechanism, plastic deformation phenomena, the heat released during the cutting process, friction, wear and lubrication on cutting, specific cutting forces and moments), theoretical concepts for generating surfaces on machine tools, methods of obtaining surfaces by backing-off, rolling, generating involute and complex surfaces.

USV.FIM.II.DD.05.04
Management (Autumn/4)
4 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 4
The course presents management processes and relationships within an organization, built in such a way as to achieve business success. It treats the systemic management issue, the management system being structured into five subsystems: organizational subsystem, information subsystem, decision subsystem, subsystem management methods and techniques management methods, as well as other components management subsystem of the management system. Each substitute is shown in contemporary approach, specifying the functions, activities and tasks in achieving the organization’s strategic and tactical management objectives using various methods.

USV.FIM.II.DD.05.05
Thermal treatments (Autumn/3)
3 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 3

USV.FIM.II.DD.05.06
Cutting tools (Autumn/3)
3 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 5
The role of the cutting tools in machine manufacturing; trends in their development; destination, structure and classification of the cutting tools; main types of the cutting tools; elements of calculation and construction for lathe cutting tool, broaches, drilling holes tools, mills, gear grinding tools and for combined tools.

USV.FIM.ILDS.05.08
Plastics and composites pieces manufacture (Autumn/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
Composite materials; Composite materials matrices; Metal and plastic composites solidification; Composite material with non-metal matrix; Composite and plastics materials properties; Plastic and composites quality control.
USV.FIM.II.DS.06.09
Experimental Design (Spring/3)
3 hours per week; 14 weeks /2nd semester: 28C/14L; ECTS credits: 3
General problems on research. Getting metrology. Measurement experiment results. Classical and modern experiments; Classical methods for planning experiments; Complete factorial plans; Experimental plans and mathematical modeling of the studied phenomenon; Modern methods of experimental planning; Analysis of results variance; Conclusions on the study of a phenomenon / product through experimental plans method; Acquisition of data for the study of industrial phenomenon; Experimental plans and industrial practice; Roughness measurement and dependency factors or Length measurement and dependency factors; Mathematical modeling of practical applications; Conclusions.

USV.FIM.II.DD.06.10
Machine Elements 2 (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
This is the second part of machine elements course, concerning modelling, design, integration and best practices for use of machine elements such as shafts, hydrodynamic, hydrostatic and rolling bearings, keys, pins, cotters assembly methods and springs. For each type of elements a brief description, stresses, failure, recommended materials and calculus criteria is presented. These are reinforced a substantial design project wherein students design a two steps (belts and gears) mechanical transmission system.

USV.FIM.II.DD.06.11
Machine Elements 2 - project (Spring/3)
2 hours per week; 14 weeks /6th semester:28P; ECTS credits: 2
A substantial design project wherein students design a two steps (belts and gears) mechanical transmission system.

USV.FIM.II.DS.06.12
Processing by cold plastic deformation (1) (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
The structure of metals and alloys and its influence on plasticity; plastic deformation of single crystals and polycrystalline aggregates; plasticity conditions; the behaviour of materials at plastic deformation; cold plastic deformation laws; slide theory; material processing by cutting.

USV.FIM.II.DD.06.13
Machine Tool (2) (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
Objectives of course are to provide students with an understanding of Hydraulics of machine tools: component parts; speed adjustment using resistive and volume components; hidraulic circuits for principal structure work; hidraulic circuits for auxiliary structure; types and structures of leather, milling machines, boring machines, planing machines, slotting machines, broaching machines, grinding machines; gear machines.

USV.FIM.II.DD.06.15
Equipment and machinery vibrations (Spring/3)
3 hours per week, 14 weeks/6-th semester: 28C/14L, ECTS credits: 3

USV.FIM.II.DS.06.16
Computer aided design (Spring/3)
2 hours per week;14 weeks /6th semester: 28L;ECTS credits: 2
Autodesk Inventor overview, Creating 2D sketches, Creating solids from 2D sketches, Parametric solids editing, Creating swept type bodies, Creating loft-type bodies, Creating connections and edges, Creating holes and threads, Creating parts with thin walls; Adding components in assembly, Creating parts in the ensemble, Identifying the parts in the assembly, Controls and motion analysis, The interference determination.

USV.FIM.II.DD.06.17
Practical training (Spring/3)
90 hours 3 weeks / 6th semester; ECTS credits: 4
Practical activities enable the student to put into practice the theory and/or skills they are studying, often in a practical environment: field work, work placements, presentations, working in laboratories and workshops. Practical sessions allow learners to: demonstrate and extend their skills; collect specimens; carry out experiments; demonstrate their subject knowledge; apply theory in practice; demonstrate their awareness in applying health and safety regulations / Practical activities on specific aspects on industrial engineering in different institutions/companies. Solving specific problems related with industrial engineering.

4th YEAR
USV.FIM.II.DS.07.01
Robotics (Autumn/4)
4 hours per week; 14 weeks /7th semester: 28C/28L; ECTS credits 5

USV.FIM.II.DS.07.02
Cutting Technologies 2 (Autumn/4)
4 hours per week; 14 weeks / 7th semester: 28C/28L; ECTS credits: 5
Drilling technologies, Grinding technologies, Super finishing technologies, Tapping technologies, Manufacturing Technologies on aggregate machine-tools, Shaft class part manufacturing technology, Gear wheel manufacturing-technology , Technology for casing-class part manufacturing, Lever-class part manufacturing technology, Bushing-class part manufacturing technology, Machine assembly process

USV.FIM.II.DS.07.03
Processing by cold plastic deformation 2 (Autumn/4)
4 hours per week; 14 weeks / 7th semester: 28C/28L; ECTS credits: 5
Processing by cold forming processes 2 shows cold bending, stamping, forming, volume pressing and assembly processes. In every process is studied the tension and the strain state applied on the workpiece material which is being processed, plus the calculus relations of power parameters. Also presented are technological calculations and factors that influence the quality and precision of the machined parts under these procedures. With every processing procedure, the required processing equipment is presented.

USV.FIM.II.DID.07.04

Technological devices (Autumn/4)

2 hours per week; 14 weeks / 7th semester: 28C/28L; ECTS credits: 5

The technological device (TD) – general facts, The bases of conception of TD, Construction of guidance elements, GE Construction of fasteners in devices F, Centering mechanism CM, Self-centered fastening mechanisms, Providing with devices of the technological system of processing. The technological system of measurement and control

USV.FIM.II.DID.07.05

Management (Autumn/4)

4 hours per week; 14 weeks / 7th semester: 28C/28L; ECTS credits: 4

The course presents management processes and relationships within an organization, built in such a way as to achieve business success. It treats the systemic management issue, the management system being structured into five subsystems: organizational subsystem, information subsystem, decision subsystem, subsystem management methods and techniques management methods, as well as other components management subsystem of the management system. Each substitute is shown in contemporary approach, specifying the functions, activities and tasks in achieving the organization’s strategic and tactical management objectives using various methods.

USV.FIM.II.DS.08.07

Computer aided manufacturing technologies (Spring/4)

4 hours per week; 14 weeks / 8th semester: 28C/28P; ECTS credits: 3

Short history of computer aided manufacturing technologies, Computer assisted manufacturing technologies, Computer process control, Fundaments of computer assisted part of programming, Modelling and analysis, Direct numerical control, Computer supervision of manufacturing technologies, Operation level production systems, Computer assisted group technologies, Manufacturing cell design

USV.FIM.II.DS.08.08

Cutting Technologies 3 - project (Spring/4)

2 hours per week; 14 weeks / 8th semester:28P; ECTS credits: 2

Product design analysis and workpiece material selection, Machining operation sequence planning, The calculation of minimum material stock, Calculation of machining parameters, Calculation of machining time, Calculation of the technical and economical process parameters, Logistics and technical documentation

USV.FIM.II.DS.08.09

Processing by cold plastic deformation (3) – project (Spring/4)

2 hours per week; 14 weeks / 8th semester:28P; ECTS credits: 2

Work-piece analysis; determination of the shape and dimensions of plan work-piece; analysis of division of the semi-finished product, determination of performance technology, calculation of forces and of the pressure center; design mould; instructions for installation, maintenance and operation; setting of standard time; calculation of production cost; labour protection instructions

USV.FIM.II.DID.08.10

Technological devices - project (Spring/4)

2 hour per week; 14 weeks / 7th semester:28P; ECTS credits: 2

Technological studies of the manufacturing workpiece; Establishing the workpiece orientation scheme; Establishing a scheme for fixing the workpiece; Establishing the clamping mechanism; Establishing the principle scheme of the device; Design the device assembly; Organological calculations and finalizing the drawings; Technical-economic explanatory memorandum; The device quality documents.

USV.FIM.II.DID.08.11

Quality Management (Spring/4)

3 hours per week;14 weeks /8th semester: 28C/14S; ECTS credits: 2

The first part of the course deals with issues concerning definition, characteristics and quality indicators. There are also summarized information referring to the structure of the quality management system (QMS), to its documentation, the related legislation that underlies the design, the implementation, the certification and the improvement of QMS. At the end of the course there can be found features of service quality management, quality management principles, elements of auditing quality and quality tools.

USV.FIM.II.DS.08.12

Researching and elaborating graduation paper (Spring/4)

2 hours per week; 14 weeks / 8th semester 28P; ECTS credits: 2

Analyzing the current state of the themes and existing solutions; Describing the new proposed solutions and the optimal variant; Justifying the chosen solution through organological, technological, electrical, electronic, hydraulic, or thermal calculations; Technical-economical assessment; Aspects regarding the development, installation, maintenance and exploiting of the equipment or device (if applicable)

USV.FIM.II.DS.07.14

Reliability and maintenance (Autumn/4)

3 hours per week; 14 weeks / 7th semester: 28C/14S; ECTS credits: 2

This course familiarizes the students with the concept of reliability, maintainability and availability and their importance when dealing with the conception and exploitation of machine-tools and other technical equipments. It presents the reliability, maintainability and availability concepts, elements of probability theory and its application in reliability, reliability and reliability characteristics, reliability tests, technical issues of reliability theory, maintainability and maintainability characteristics, menentance concept and issues, availability and availability characteristics, etc...

USV.FIM.II.DS.07.15

Risk Assessment of Occupational Health and Safety (Autumn/4)

3 hours per week; 14 weeks / 7th semester: 28C/14S; ECTS credits: 2

The course presents the concepts of accident and occupational disease risk factors together with their labor system components: the executor, the task, means of labor and the working environment. The national and European legislation on employees’ occupational safety and health are presented. It treats fore-accident and post- accident risk assessment
methods of health and occupational security. Risk assessment enables us to establish the technical and organizational requirements, removal or mitigation of accidents and occupational diseases in all kinds of activities.

USV.FIM.ILDS.07.17
Production management (Autumn/4)
3 hours per week; 14 weeks / 7th semester: 28C/14L; ECTS credits: 2
Enterprise and production management. Classification of production / Production types. Codification and classification of articles. Inventory management. Supply methods. Traditional systems of production management. Modern production management systems (Toyota, Lean, Kanban, OPT, Just in time, SMED ...). Production batches

USV.FIM.ILDS.08.20
Value Analysis – project (Spring/4)
1 hour per week; 14 weeks / 7th semester: 14P; ECTS credits: 1
Value Analysis methodology; Value Analysis stages; Factors involved in Value Analysis; Factors and costs analysis; Functional analysis methods; Solutions evaluation methods; Balance forecasting and decision

USV.FIM.ILDS.08.22
Programming numerical controlled machine tools (Spring/4)
4 hours per week; 14 weeks / 8th semester: 28C/28L; ECTS credits: 2
Computer numeric controlled, Technical and economical advantages of numerical control, Fundamentals of numerical controlled machine tools, Numerical controlled machine tool structure, CNC programming

USV.FIM.ILDS.08.23
Numerical controlled systems and equipments (Spring/4)
4 hours per week; 14 weeks / 8th semester: 28C/28L; ECTS credits: 2
Computer numerical control; Technical and economical advantages of using NC systems and equipments; The principle of CNC machine; Structure of numerical command systems and equipment; Programming NC systems and equipments

USV.FIM.ILDS.08.24
Flexible Manufacturing Systems (Spring/4)
3 hours per week; 14 weeks / 8th semester: 28C/14L; ECTS credits: 1
Flexible Manufacturing System (FMS). Definition, structure, function. Degree of flexibility and automation of FMS. Specific structures of flexible manufacturing systems. Principles for integrated manufacturing. Integration of industrial robots in flexible manufacturing cells. The FMS implementation impact above the enterprise

USV.FIM.TCM.DS.08.25
Robots, driving and using (Spring/4)
3 hours per week; 14 weeks /2nd semester: 28C/14L/ ECTS credits: 1

USV.FIM.ILDS.08.27
Assembly technologies and equipments (Spring/4)
3 hours per week; 14 weeks / 8th semester: 28C/14L; ECTS credits: 2
Assembly technological process and equipments; Assembly system functions; Assemblies classification; Assembly parts design; Chain dimensions; Preparatory operations; Assembly ergonomics; Assembly precision; Mechanization and automation of the work; Aspects of technological equipment design for disassembly

Ștefan cel Mare University of Suceava, România
Faculty of Mechanical Engineering
Mechatronics and Management

<table>
<thead>
<tr>
<th>MECHATRONICS 1st year</th>
<th>Field of study</th>
<th>Mechatronics and Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the educational program</td>
<td>Mechatronics Undergraduate</td>
<td></td>
</tr>
</tbody>
</table>

USV.FIM.MR.DF.01.01
Calculus (Autumn/1)
4 hours per week; 14 weeks/1st semester; 28C/28S; ECTS credits: 5
Basics of calculus: infinite series, differentiation and partial derivatives of functions of several variables, applications of differentiation, multiple integrals, line integrals, surface integrals, differential equations of first order.

USV.FIM.MR.DF.01.02
Algebra, Analytical and Differential Geometry (Autumn/1)
4 hours per week; 14 weeks /1st semester: 28C/28S; ECTS credits: 5
The course presents the most important concepts, results and mathematical methods in algebra, analytical and differential geometry useful in the perception of physical phenomena and other mathematical courses. An introduction in linear algebra (vector spaces, linear transformations, eigenvalues, quadratic forms, Euclidian spaces), analytical geometry in two or three dimensions, applications of calculus to the study of the geometry of curves and surfaces in Euclidean space.

USV.FIM.MR.DD.01.03
Science and Engineering of Materials (Autumn/1)
3 hours per week; 14 weeks /1st semester: 28C/14L; ECTS credits: 3

USV.FIM.MR.DF.01.04
Applied Informatics (Autumn/1)
4 hours per week; 14 weeks/1st semester; 28C/28L; ECTS credits: 5
Operating Systems, architecture of the computer, the main aspects of Office package, the main concept of the algorithms and programming.
USV.FIM.MR.DF.01.05
Chemistry (Autumn/1)
3 hours per week; 14 weeks / 1st semester: 28C/14L; ECTS credits: 4
Introduction to Chemistry: definition, chemistry classifications, atom structure, Chemical bonds, General properties of substances (physical, mechanical, chemical, electrical and magnetic) solutions and disperse systems, industrial water, electrochemistry: electrolysis and laws of electrolysis, the chemical Power Sources, Corrosion and anticorrosive protection of metals and alloys, fuels and lubricants.

USV.FIM.MR.DF.01.06
Engineering drawing (Autumn/1)
3 hours per week; 14 weeks /1st semester: 28C/214L; ECTS credits: 4
The objectives of this discipline are to provide students a clearer picture of bodies in space through a 2D representation using the projection method and vice versa. Descriptive geometry is a science of the drawing deals with the following main topics: Orthographic drawing; Projection systems; Dihedral and tridihedral representation of the point, line and plane; Traces of straight line and plan; Straight line and plane in particular positions; Relative position two straight lines; Intersection between lines and/or planes; Folding line and rotation methods; True length of lines; Measurement of angles; Geometric representation of a prism, pyramid, cone and cylinder; Intersections of polyhedrons with lines and planes; Development drawing. Sections through a pyramid, cone cylinder and sphere.

USV.FIM.MR.DC.01.07
Economics (Autumn/1)
2 hours per week; 14 weeks/1th semester: 28C; ECTS credits: 2

USV.FIM.MR.DC.01.08
Physical education (Autumn/1)
1 hour per week; 14 weeks /1st semester: 14S; ECTS credits: 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using specific means of health education and general harmonious physical development and training of athletic exercises of the body to maintain a sustained effort

USV.FIM.MR.DC.01.09
English 1 (Autumn/1)
2 hour per week, 28S: 14 weeks/ 1th semester, ECTS credits: 2
Multiple general assessment test;An overview of main grammar issues, based on TOEFL and Cambridge tests - vocabulary reminder (at least 14 seperate seminars); Model Test 5, TOEFL Essential English; Structure and written expression; Vocabulary and Reading Comprehension (False friends approach); TOEFL Essential English 6 – transition to technical terms; TOEFL 7 – Tenses; Science and Technology; The Importance of the Research Theorist;The impact of technology on everyday life

USV.FIM.MR.DID.01.10
Mechanics (Spring/1)
5 hours per week, 28C/28S/14L: 14 weeks/ 2nd semester, ECTS credits 7
Vectors; Statics of particles; Equivalent systems of forces; Equilibrium of rigid bodies; Friction; Centers of gravity; Moments of inertia; Kinematics of particles; Relative motion; Kinematics of rigid bodies; Dynamics of particles; Dynamics of rigid bodies

USV.FIM.MR.DID.02.11
Mechatronic systems fundamentals (Spring/1)
3 hours per week, 28C/14L: 14 weeks/ 2nd semester, ECTS credits 3
Definitions of mechatronics; essential vocabulary for interdisciplinary mechatronic applications; concept of systems; example of mechatronic systems; modelling basics; design of mechatronic systems; joining principles of mechanical, electronic, electrical, software engineering, robotics, motion control, sensors, actuators, and other control devices, integrated hardware and software components.

USV.FIM.MR.DID.02.12
Physics 1 (Spring /1)
4 hours per week; 14 weeks/2nd semester; 28C/28L; ECTS credits: 5
Overview of the main natural phenomena in terms of: mechanics, electromagnetism, optics, atomic physics and, quantum mechanics. Each domain shows the student’s theoretical and experimental method to understand the main phenomena for the mechanical engineer.

USV.FIM.MR.DID.02.13
Numerical Methods (Spring/1)
4 hours per week, 28C/28L: 14 weeks/ 4th semester, ECTS credits 5
The course elaborates on the following main topics: basic notions in error theory, algorithms and representation of algorithms, numerical methods for solving algebraic and transcendentinal equations, numerical solution of systems of linear equations, numerical approximation of real functions, Lagrange interpolation, Newton interpolation polynomial, spline interpolation, regression approximation, derivation and numerical integration, numerical solution of differential equations, experimental data processing, implementation of algorithms in Mathcad.

USV.FIM.MR.DC.02.14
Communication (Spring/1)
2 hours per week; 14 weeks / 1st semester: 28S; ECTS credits: 2
Objectives of effective Communication; Barriers in Communication; Metacommunication - nonverbal communication; Message planning; Intra C, inter C, group C. and mass C; Communication as a transactional process; Negotiation and manipulative techniques; The interview, the CV/resume; Frequent mistakes in today's vernacular as a result of borrowings

USV.FIM.MR.DC.02.15
Engineering drawing (Spring/2)
5 hours per week; 14 weeks / 2nd semester; 28C/42L; ECTS credits: 6
Drawing elements, Types of drawings, Projection, Sectioning, Dimensioning, Detail drawing, Assembly drawing

USV.FIM.MR.DC.02.16
Physical education 2 (Spring/1)
1 hour per week, 14S: 14 weeks/ 2nd semester, ECTS credits 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using specific means of health education and general harmonious physical development and training of athletic exercises of the body to maintain a sustained effort

USV.FIM.MR.DC.02.17
MECHATRONICS 2nd year

USV.FIM.MR.DF.03.01
Special Mathematics (Autumn/2)
4 hours per week; 14 weeks/3rd semester; 28C/28S; ECTS credits: 5

USV.FIM.MR.DF.03.02
Strength of materials 1 (Autumn/2)
4 hours per week; 14 weeks /3rd semester; 28C/28S; ECTS credits: 5

USV.FIM.MR.DD.03.03
Mechanisms and machine elements (1) (Autumn/2)
5 hours per week; 14 weeks /3rd semester; 28C/28S/14L; ECTS credits: 6
Mobility; degree of freedom, classification of mechanisms; planar, spherical, and spatial mechanisms; positional, velocity, and acceleration analysis; lower joint mechanisms vectorial loop method for planar kinematics; Hartenberg-Denavit convention; kinematics of spatial linkages; cam mechanisms; displacements diagram, characteristic geometrical parameters; cam profile tracing; pressure angle; minimum radius-of-curvature; spur gears, fundamental law of toothed gearing; the manufacture of gear teeth; interference and undercutting; contact ratio; helical gears, contact of helical gear teeth; herringbone gears; crossed-axis helical gear; bevel gears; crown and face gears; hypoid gears; basics of worm and worm gears; mechanisms train; dynamics of machine; forces acting upon machine elements; condition of equilibrium; inertia force and d’Alembert principle in kinetostatics; static and dynamic balancing of machines; cam dynamics; dynamic equation of flywheels; centrifugal governors; governors as a dynamic system; elementary theory of gyroscopes;

USV.FIM.MR.DD.03.04
Tolerances and dimensional control (Autumn/2)
3 hours per week; 14 weeks /3rd semester; 28C/14L; ECTS credits: 4
This course familiarizes the students with the prescription and control of the dimensional and geometrical precision of the machine elements. It presents the dimensional and geometrical precision, dimensions’ chains, basic notions concerning the dimensional and geometrical measurements and control, statistical control methods.

USV.FIM.MR.DS.03.05
Materials Technology (Autumn/2)
3 hours per week; 14 weeks/3rd semester; 28C/14L; ECTS credits: 4
Technological process; Alloy casting. Materials plastic deformation; Metallic materials welding; Cutting metal materials by thermal processes. Ceramic material processing technologies; Plastics processing technologies; Composite materials manufacturing technology; Nonconventional technologies.

USV.FIM.MR.DF.03.06
COMPUTER AIDED DESIGN 3 (Autumn/2)
4 hours per week; 14 weeks/3rd semester; 14C/42L; ECTS credits: 5
This course familiarizes the students with the prescription and control of the dimensional and geometrical precision of the machine elements. It presents the dimensional and geometrical precision, dimensions’ chains, basic notions concerning the dimensional and geometrical measurements and control, statistical control methods.

USV.FIM.MR.DC.03.08
Physical education and sport 3 (Autumn/2)
1 hour per week, 14S: 14 weeks/ 3rd semester, ECTS credits 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using specific means of health education and general harmonious physical development and training of athletic exercises of the body to maintain a sustained effort.

USV.FIM.MR.DF.04.09
Mechanisms and machine elements (Spring/2)
2 hours per week, 14 weeks/4-th semester; 28P, ECTS credits: 2
Project theme presentation, requirements and references. Structural analysis and graphical-analytical kinematics analysis for a linkage mechanism. Kinematical analysis of mechanisms with lower pairs using vector contour method. Kinetics-static analysis for lower pair mechanism. Design of a mechanism with rotating cam and translational follower with imposed law of motion. Cam’s profile tracing using computer.

USV.FIM.MR.DD.04.10
Strength of materials 2 (Spring/2)
2 hours per week; 14 weeks /4-th semester; 28C/28S/28L; ECTS credits: 6

USV.FIM.MR.DD.04.11
Thermotechnics (Spring/2)
6 hours per week 28C/28S/28L: 14 weeks/4th semester, ECTS credits 6

USV.FIM.MR.DID.04.12 Fluid Mechanics (Spring/2) 5 hours per week 28C/14S/28L: 14 weeks/4th semester, ECTS credits 5 Introduction and fundamental concepts, fluid statics, Fundamental concepts used in fluid flow analysis, The energy equation, Inviscid incompressible fluid flow, Inviscid compressible flow, The momentum equation, Dimensional analysis and similitude, Incompressible viscous flow, Definition and classification of hydro-pneumatic machines.

USV.FIM.MR.DD.04.13 Electrotechnics and electrical machines (Spring/2) 4 hours per week; 14 weeks /4th semester: 28C/28L; ECTS credits: 4 Periodic electrical signals, Electrical circuits, Laws, theorems and methods of analysis of electrical circuits, Magnetic circuits, Electrical circuit analysis, Electrical transformer, Asynchronous electric machine, DC electric machine, Synchronous electric machine.

USV.FIM.MR.DD.04.14 Electronics (Spring/2) 3 hours per week; 14 weeks /4th semester: 28C/14L; ECTS credits: 3 Introduction in Electronics; Concepts of semiconductor physics; Pn junction; Semiconductor diodes; Types of diodes; Bipolar transistor; Field Effect Transistors; MOS transistor; Other devices with junctions; Optoelectronic semiconductor devices; Regime of switching semiconductor devices; Diode Circuits; Amplifiers; Reaction in amplifiers; Harmonic oscillators

USV.FIM.MR.DC.04.15 Physical education 4 (Spring/2) 1 hour per week, 14S: 14 weeks/ 4th semester, ECTS credits 1 In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using specific means of health education and general harmonious physical development and training of athletic exercises of the body to maintain a sustained effort

USV.FIM.MR.DD.04.16 Practical training (Spring/2) 90 hours; 4th semester; ECTS credits: 4 Safety; Internship on vehicle mechatronics

MECHATRONICS 3rd year

USV.FIM.MR.DD.05.01 Data acquisition and virtual instrumentation (Spring/3) 3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3 Data acquisition denotes a branch of engineering that deals with collecting information from a number of sources numerical and/or analog, converting the data into a digital form, processing, storage and transmission of it, for example to a computer. Data processing may consist of simple operations, such as comparisons, up to complicated mathematical processing (integration, differentiation, mediation, Fourier transforms, etc.). In order to control a physical process is necessary to extract information about its development, using transducers. The electrical signal output from the transducer is converted into an electrical signal with different parameters (current, voltage, etc.) through conditioning circuits. It requires the conversion of analog signals into digital signals supported by numerical processing system. Digital signals are obtained by sampling data at any given time, the analog signals and convert these values as numerical one through analog digital converters. Virtual instruments can be a program written in the LabVIEW or in other programming languages.

USV.FIM.MR.DD.05.02 Medical equipment (Autumn/3) 3 hours per week, 28C/14L: 14 weeks/ 7th semester, ECTS credits 3 Introduction; parameters of medical devices and classifications; elements of medical instruments; displacement sensors; temperature and optical sensors; cell, nerve, and muscle potentials; electrocardiogram; electrode polarization; surface electrodes; electrocardiograph; blood pressure sensors; blood flowmeters; impedance plethysmography; respiratory pressure and flow; respiratory gas concentration; respiratory equipment; blood-gas sensors; imaging: radiography, ultrasonic, MRI; pacemakers and defibrillators; cardiac assist devices; surgical instruments; anesthesia equipments.

USV.FIM.MR.DID.05.03 Automatic Systems – Fundamentals (Autumn/3) 3 hours per week 28C/14S: 14 weeks/5th semester, ECTS credits: 3 Automatic linear systems (mathematical modeling, performance calculation, design concepts). Automated multivariable systems. Automated nonlinear systems. Automated adaptive systems. Automated optimal extreme systems

USV.FIM.MR.DD.05.04 Architecture of numerical computers (Autumn/3) 3 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 4 With the increasing use of numerical control of mechanical systems, it is necessary for mechanical engineering students to have a basic knowledge of microcontrollers and microprocessors and their associated interfaces with mechanical world. The course subject content covers the basics of microcontroller and microprocessor: the CPU, memory, I/O, buses subsystems, basic operation of a microprocessor system (fetch and execute cycle), differences between microcontroller and microprocessor, the architecture of some typical microcontrollers (ATmega16, PIC16F877, INTEL 8051) and their features (block diagram
and definitions of the pins, I/O port structure, memory organization, general purpose RAM, bit addressable RAM, register bank, special function registers, external memory, memory space mapping and decoding, bus control signals timing).

USV.FIM. MR.DD.05.05
Digital Electronics (Autumn/3)
3 hours per week 28C/14L: 14 weeks/5th semester, ECTS credits: 3
This course covers combinational and sequential logic circuits. Topics include number systems, Boolean algebra, logic families, medium scale integration (MSI) and large scale integration (LSI) circuits and other related topics. Upon completion, students should be able to construct, analyze, verify, and troubleshoot digital circuits using appropriate techniques and test equipment.

USV.FIM.MR.DS.05.06
Robotics (Autumn/3)
4 hours per week; 14 weeks /7th semester: 28C/28L; ECTS credits 5

USV.FIM.MR. DD.05.07
Mechanisms and machine elements (2) (Spring/3)
4 hours per week 28C/14S/14L: 14 weeks/5th semester, ECTS credits: 4
This is the second part of machine elements course, concerning modelling, design, integration and best practices for use of machine elements such as shafts, hydrodynamic, hydrostatic and rolling bearings, keys, pins, cotters assembly methods and springs. For each type of elements a brief description, stresses, failure, recommended materials and calclus criteria is presented. These are reinforced via laboratory experiences and a substantial design project wherein students design a two steps (belts and gears) mechanical transmission system

USV.FIM.MR. DD.05.08
Mechanisms and machine elements 2 – project (Spring/3)
2 hours per week; 14 weeks /5th semester:28P; ECTS credits: 2
A substantial design project wherein students design a two steps (belts and gears) mechanical transmission system.

USV.FIM.MR. DS.06.09
Experimental Design (Spring/3)
3 hours per week; 14 weeks /2nd semester: 28C/14L; ECTS credits: 3
General problems on research. Getting metrology. Measurement experiment results. Classic and modern experiments; Classical methods for planning experiments; Complete factorial plans; Experimental plans and mathematical modeling of the studied phenomenon; Modern methods of experimental planning; Analysis of results variance; Conclusions on the study of a phenomenon / product through experimental plans method; Acquisition of data for the study of industrial phenomenon; Experimental plans and industrial practice; Roughness measurement and dependency factors or Length measurement and dependency factors; Mathematical modeling of practical applications; Conclusions.

USV.FIM. MR.DD.06.10
Power Electronics (Spring/3)
3 hours per week; 14 weeks /6th semester: 28C/14L; ECTS credits: 3

USV.FIM. MR.DS.06.11
Manufacturing technologies and equipments (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
This course introduces students to the manufacturing industry by giving them knowledge about the design and fabrication of mechanical products using a variety of processes, tools, and equipments. Provides basic knowledge of various manufacturing processes and materials. The course covers processes involving cutting tools, machine tools, measuring, and inspection and provides knowledge of manufacturing procedures and industry standard roles in manufacturing settings.

USV.FIM. MR.DD.06.12
Mechanical System Dynamics (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
Notion of mechanical and mechatronical system; inertial characteristics of a systems; mass and inertia matrix tensor; degree of freedom of a system; systems with finite and infinite degree of freedom; kinematical parameters of a dynamical systems; velocity and angular velocity; dynamical characteristics; force and torque; work, energy and power; component of mechanical systems; actuators; dumping elements; elastic elements; characteristics of electrical systems; Newton-Euler motion equations for a rigid body; Lagrange’s Equation of second kind; vibrations in mechanical system; mathematical model of a mechanical system; ordinary linear differential equation; solution of homogeneous and non-homogenous ordinary differential equation; solution of linear differential equation with constant coefficient, characteristic equation; Laplace transform; transfer function; dynamic stability; poles and stability criteria.

USV.FIM.MR.DD.06.13
Computer Aided Graphics (Spring/3)
2 hours per week; 14 weeks / 6th semester: 28L; ECTS credits: 3
Introduction to AutoCAD, Drawing convention, Interfacing with AutoCAD, Drawing objects, Creating a new drawing, Drawing, editing, hatching, dimensioning commands, 2D applications.

USV.FIM. MR.DD.06.14
Drive Systems (Spring/3)
2 hours per week; 14 weeks /6th semester: 14C/14L; ECTS credits: 2
Basic concepts of drives, Principles of choice of drive systems and areas of use. Hydraulic drive systems: Structure of hydraulic, Displacement Pumps, Gear hydrostatic adjustment command and control, Electro-open CNC systems, Electric
drive: The drive to DC motors, Electromechanical converters, DC electric motor, Servomotor dc, Stepper motors, Drives with AC motors, Linear Actuators, Pneumatic: Structure of pneumatic drives, Pneumatic motors, Pneumatic control switchgear, Switchgear and auxiliary pneumatic, Special structures pneumatic drive units.

USV.FIM.MR.DD.05.16
Practical training (Autumn/3)
90 hours / 6th semester: ECTS credits: 5
Machining precision technologies; assembly technologies of mechatronical elements; measuring and control devices; measurement accuracy improvements.

USV.FIM.MR.DS.05.17
Biomechatronics (Autumn/3)
3 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 5
Introduction to biomechatronics; biosystems, bionic elements, elements bioelectronics, biosensors, elements of biomechanics; elements biophotonics; elements bioacoustics; artificial organs; biorobotics.

MECHATRONICS 4th year

USV.FIM.MR.DD.07.01
Robotics 2 (Autumn/4)
4 hours per week; 14 weeks / 7th semester: 28C/28L; ECTS credits: 4

USV.FIM.MCT.DD.07.02
Equipment and Manufacturing Technologies in Mechatronics (Autumn/4)
3 hours per week; 14 weeks / 7th semester: 28C/14L; ECTS credits: 4

USV.FIM.MR.DS.07.04
Automotive mechatronics (Autumn/4)
4 hours per week; 14 weeks / 7th semester: 28C/28L; ECTS credits: 4

USV.FIM.MR.DD.07.06
Management (Autumn/4)
3 hour per week: 14 weeks/7-th semester: 28C/14L, ECTS credits: 3
The course presents management processes and relationships within an organization, built in such a way as to achieve business success. It treats the systemic management issue, the management system being structured into five subsystems: organizational subsystem, information subsystem, decision subsystem, subsystem management methods and techniques management methods, as well as other components management subsystem of the management system. Each substitute is shown in contemporary approach, specifying the functions, activities and tasks in achieving the organization’s strategic and tactical management objectives using various methods.

USV.FIM.MCT.DS.07.14
RELIABILITY AND MAINTENANCE (Autumn/4)
3 hours per week; 14 weeks / 1st semester (autumn): 14C/7S; ECTS credits: 4
Subject descriptive: This course familiarizes the students with the concept of reliability, maintainability and availability and their importance when dealing with the conception and exploitation of machine-tools and other technical equipments. It presents the reliability, maintainability and availability concepts, elements of probability theory and its application in reliability, reliability and reliability characteristics, reliability tests, technical issues of reliability theory, maintainability and maintainability characteristics, availability and availability characteristics, etc…

USV.FIM.MR.DS.07.15
SYSTEMS MAINTENANCE IN MECHATRONICS (Autumn/4)
3 hours per week; 14 weeks / 1st semester (autumn): 14C/7S; ECTS credits: 4
Subject descriptive: This course familiarizes the students with the concept of maintainability and its importance when dealing with mechatronic systems and other technical equipment’s. It presents the reliability, maintainability and availability concepts, elements of probability theory and its application in reliability, reliability and reliability characteristics, reliability tests, technical issues of reliability theory, maintainability and maintainability characteristics, availability and availability characteristics, etc… Aspects concerning reliability and maintenance of mechatronic systems are revised.

USV.FIM.MR.DS.07.16
Smart materials and structures (Autumn/4)
3 hours per week; 14 weeks/8th semester: 28C/14L; ECTS credits: 3
Piezoceramics, Piezopolymers, Electrostrictive ceramics, Magnetostrictives, Shape memory alloys, Electro rheological fluids, Magneto rheological fluids, Actuators and sensors
This course deals with process and production planning, and students will learn how such tasks can become more efficient by using CAM systems. CAM software uses the models and assemblies created in CAD software to generate tool paths that drive the machines that turn the designs into physical parts. Students are expected to apply their knowledge of computer-aided engineering and manufacturing processes. Students will explore a range of different CAM software packages for different types of products and production methods.

According to the original definition of mechatronics that the Yasakawa Electric Company proposed and the definitions that have since appeared, many engineering products designed and manufactured in the last thirty years that integrate mechanical and electrical systems can be classified as mechatronic systems. Discipline aims at combining the knowledge gained in mechatronics basis, electronics and mechanical engineering, in order to obtain mechatronic systems and application development complex interdisciplinary. In the discipline “Mechatronic Systems” will be studied what are the main categories of mechatronic systems and how to simulate or realize them. The knowledge gained can be applied in the design or operation of mechatronic systems.

This course will introduce students to the processes and technologies associated with computer numerical control (CNC) systems used in today's manufacturing environment. The course teaches students the fundamentals of computer numerical control (CNC) machining. Students will learn how to program a CNC machine using manual G/M code programming.

This course introduces students to the processes and operations associated with computer numerical controlled milling, drilling, and turning. Students will gain a basic understanding of computer numerical control (CNC) machining processes and operations using a combination of G-codes, milling and turning equipment in the Victor V55 machining center, DOOSAN INFRACORE DT 360D vertical machining center and DOOSAN INFRACORE LYNX 220 LA lathe center.

The course presents some aspects regarding mobile robots architecture, applications and design. A brief classification and some practical application examples of robots are presented in the first chapter. The mobile platforms structure and the dynamic behavior are described in the second chapter. In the third chapter are presented aspects regarding mechanical driving systems. The actuators, transmission chains and locomotion elements are analyzed. The final chapter presents aspects regarding command systems, sensors and electrical power driving modules.

Flexible systems (Spring/4)
4 hours per week; 14 weeks /8th semester: 28C/28L; ECTS credits: 3

The FMS implementation impact above the enterprise

Researching and elaborating graduation paper(Spring 4)
5 hours per week;14 weeks / 8th semester: 70P;ECTS credits: 10
Analyzing the current state of the themes and existing solutions; Describing the new proposed solutions and the optimal variant; Justifying the chosen solution through organological, technological, electrical, electronic, hydraulic, or thermal calculations; Technical-economical assessment; Aspects regarding the development, installation, maintenance and exploiting of the equipment or device (if applicable)

Ştefan cel Mare University of Suceava,
România
Faculty of Mechanical Engineering
Mechatronics and Management

<table>
<thead>
<tr>
<th>Field of study</th>
<th>Mechanical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the educational program</td>
<td>Mechanical Engineering</td>
</tr>
</tbody>
</table>

1st YEAR

Calculus (Autumn/1)
4 hours per week; 14 weeks/1st semester; 28C/28S; ECTS credits: 5
Basics of calculus: infinite series, differentiation and partial derivatives of functions of several variables, applications of differentiation, multiple integrals, line integrals, surface integrals, differential equations of first order.

Algebra, Analytical and Differential Geometry (Autumn/1)
4 hours per week; 14 weeks / 1st semester: 28C/28S; ECTS credits: 5
The course presents the most important concepts, results and mathematical methods in algebra, analytical and differential geometry useful in the perception of physical phenomena and other mathematical courses. An introduction in linear algebra (vector spaces, linear transformations, eigenvalues, quadratic forms, Euclidian spaces), analytical geometry in two or three dimensions, applications of calculus to the study of the geometry of curves and surfaces in Euclidean space.
USV.FIM.IM.DD.01.03
Science and Engineering of Materials (1) (Autumn/1)
3 hours per week; 14 weeks /1st semester: 28C/14L; ECTS credits: 4

USV.FIM.IM.DF.01.04
Applied Informatics (Autumn/1)
3 hours per week; 14 weeks /1st semester; 28C/14L; ECTS credits: 3
Operating Systems, architecture of the computer, the main aspects of Office package, the main concept of the algorithms and programming.

USV.FIM.IM.DF.01.05
Chemistry (Autumn/1)
4 hours per week; 14 weeks / 1st semester: 28C/28L; ECTS credits: 3
Introduction to Chemistry: definition, chemistry classifications, atom structure, Chemical bonds, General properties of substances (physical, mechanical, chemical, electrical and magnetic) solutions and disperse systems, industrial water, electrochemistry: electrolysis and laws of electrolysis, the chemical Power Sources, Corrosion and anticorrosive protection of metals and alloys, fuels and lubricants.

USV.FIM.IM.DF.01.06
Descriptive geometry (Autumn/1)
3 hours per week; 14 weeks /1st semester: 14C/28L; ECTS credits: 4
The objectives of this discipline are to provide students a clearer picture of bodies in space through a 2D representation using the projection method and vice versa. Descriptive geometry is a science of the drawing deals with the following main topics: Orthographic drawing; Projection systems; Dihedral and trihedral representation of the point, line and plane; Traces of straight line and plan; Straight line and plane in particular positions; Relative position two straight lines; Intersection between lines and/or planes; Folding line and rotation methods; True length of lines; Measurement of angles; Geometric representation of a prism, pyramid, cone and cylinder; Intersections of polyhedrons with lines and planes; Development drawing. Sections throught a pyramid, cone cylinder and sphere.

USV.FIM.IM.DC.01.07
Economics (Autumn/1)
2 hours per week; 14 weeks /1st semester: 28C; ECTS credits: 3

USV.FIM.IM.DC.01.08
Physical education (1) (Autumn/1)
1 hour per week; 14 weeks /1st semester: 28S; ECTS credits: 1
Maintaining optimal health status of students and increase their adaptability to environmental factors; Harmonization of their own physical development and prevention of possible deviations from the installation; Expansion of its own fund basic motor skills , basic applicative and basic sports ones and development of motor skills related; Independent practice of physical exercises , games and various sports; The expression of team spirit and competition , according to a system of rules accepted.

USV.FIM.IM.DC.01.09
English 1 (Autumn/1)
2 hours per week, 28S:14 weeks/ 1st semester, ECTS credits: 2
Multiple general assessment test; An overview of main grammar issues, based on TOEFL and Cambridge tests - vocabulary reminder (at least 14 seperate seminars); Model Test 5, TOEFL Essential English; Structure and written expression; Vocabulary and Reading Comprehension (False friends approach);TOEFL Essential English 6 – transition to technical terms; TOEFL 7 – Tenses; Science and Technology; The Importance of the Research Theorist; The impact of technology on everyday life

USV.FIM.IM.DD.02.10
Mechanics (Spring/1)
5 hours per week; 14 weeks / semester: 28C/28S/14L; ECTS credits: 6
Vectors; Statics of particles; Equivalent systems of forces; Equilibrium of rigid bodies; Friction; Centers of gravity; Moments of inertia; Kinematics of particles; Relative motion; Kinematics of rigid bodies; Dynamics of particles; Dynamics of rigid bodies

USV.FIM.IM.DD.02.11
Science and Engineering of Materials (2) (Spring/1)
4 hours per week; 14 weeks /2nd semester: 28C/28L; ECTS credits: 5

USV.FIM.IM.DF.02.12
Physics (Spring/1)
4 hours per week; 14 weeks / 2nd semester: 28C/28L; ECTS credits: 5
Overview of the main natural phenomena in terms of: mechanics, electromagnetism, optics, atomic physics and, quantum mechanics. Each domain shows the student’s theoretical and experimental method to understand the main phenomena for the mechanical engineer.

USV.FIM.I3.DF.02.13
Numerical Methods (Spring/1)
4 hours per week; 14 weeks /2nd semester: 28C/28L; ECTS credits: 4
The course elaborates on the following main topics: basic notions in error theory, algorithms and representation of algorithms, numerical methods for solving algebraic and transcendental equations, numerical solution of systems of linear equations, numerical approximation of real functions, Lagrange interpolation, Newton interpolation polynomial, spline interpolation, regression approximation, derivation and numerical integration, numerical solution of differential equations, experimental data processing, implementation of algorithms in Mathcad.
USV.FIM.IM.DC.02 14
Communication (Spring/1)
2 hours per week; 14 weeks / 2nd semester: 28S; ECTS credits: 3
Objectives of effective Communication; Barriers in Communication; Metacommunication - nonverbal communication; Message planning; Intra C, inter C, group C. and mass C; Communication as a transactional process; Negotiation and manipulative techniques; The interview, the CV/resume; Frequent mistakes in today's vernacular as a result of borrowings

USV.FIM.IM.DF.02.15
Engineering drawing (Spring/1)
4 hours per week; 14 weeks / 2nd semester: 28C/28L; ECTS credits: 5
Drawing elements, Types of drawings, Projection, Sectioning, Dimensioning, Detail drawing, Assembly drawing

USV.FIM.IM.DC.02.16
Physical education (2) (Spring/1)
1 hour per week; 14 weeks / 2nd semester: 14S; ECTS credits: 1
Maintaining optimal health status of students and increase their adaptability to environmental factors; Harmonization of their own physical development and prevention of possible deviations from the installation; Expansion of its own fund basic motor skills; basic applicative and basic sports ones and development of motor skills related; Independent practice of physical exercises, games and various sports; The expression of team spirit and competition, according to a system of rules accepted.

USV.FIM.IM.DC.02.17
English 2 (Spring/1)
2 hours per week; 14 weeks / 2nd semester: 28S; ECTS credits: 2
Capability to explain and interpret ideas, projects; Build-up of pros and cons in a debate; Identifying the logical sequence among a text parts and the ability to extract the relevant information from that text; Accurate reception of oral or written messages in various communicational stances. Accurate message output, both written and oral, regarding technical issues; Identifying key elements in a standard speed message; Building interaction in both written and oral communication, building the ability to defend an issue clearly and convincingly in sundry circumstances regarding familiar scientific and technical topics; Transfer and mediation of oral or written messages on diverse topics.

2nd YEAR

USV.FIM.IM.DF.03.01
Special Mathematics (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/28S; ECTS credits: 4

USV.FIM.IM.DD.03.03
Strength of materials (1) (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/28S; ECTS credits: 4

USV.FIM.IM.DD.03.04
Mechanisms (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/14S/14L; ECTS credits: 5
Mobility; degree of freedom, classification of mechanisms; planar, spherical, and spatial mechanisms; positional, velocity, and acceleration analysis; lower joint mechanisms vectorial loop method for planar kinematics; Hartenberg-Denavit convention; kinematics of spatial linkages; cam mechanisms; displacements diagram, characteristic geometrical parameters; cam profile tracing; pressure angle; minimum radius-of-curvature; spur gears, fundamental law of toothed gearing; the manufacture of gear teeth; interference and undercutting; contact ratio; helical gears, contact of helical gear teeth; herringbone gears; crossed-axis helical gear; bevel gears; crown and face gears; hypoid gears; basics of worm and worm gears; mechanisms train; dynamics of machine; forces acting upon machine elements; condition of equilibrium; inertia force and d’Alembert principle in kinetostatics; static and dynamic balancing of machines; cam dynamics; dynamic equation of flywheels; centrifugal governors; governors as a dynamic system; elementary theory of gyroscopes;

USV.FIM.IM.DD.03.05
Tolerances and dimensional control (Autumn/2)
3 hours per week; 14 weeks / 3rd semester: 28C/14L; ECTS credits: 4
This course familiarizes the students with the prescription and control of the dimensional and geometrical precision of the machine elements. It presents the dimensional and geometrical precision, dimensions’ chains, basic notions concerning the dimensional and geometrical measurements and control, statistical control methods.

USV.FIM.IM.DD.03.06
Materials Technology 1 (Autumn/2)
3 hour per week; 14 weeks / 3rd semester: 28C/14L; ECTS credits: 4
Technological process; Alloy casting. Materials plastic deformation; Metallic materials welding; Cutting metal materials by thermal processes. Ceramic material processing technologies; Plastics processing technologies; Composite materials manufacturing technology; Nonconventional technologies.

USV.FIM.IM.DF.03.07
Computer Aided Graphics (Autumn/2)
5 hours per week; 14 weeks / 3rd semester: 28C/42L; ECTS credits: 4
Introduction to AutoCAD, Drawing convention, Interfacing with AutoCAD, Drawing objects, Creating a new drawing, Drawing, editing, hatching, dimensioning commands, 2D applications

USV.FIM.IM.DC.03.08
Physical education (3) (Autumn/2)
1 hour per week; 14 weeks / 3rd semester: 14S; ECTS credits: 1
In practical work find content specific learning units
gymnastics, athletics, team sports. From basic gymnastics using operational means to organize your lesson to influence selective locomotor training and the athletic exercises of the body for exercise.

USV.FIM.IM.DD.04.10
Mechanisms (Spring/2)
2 hours per week; 14 weeks / 4th semester: 28P; ECTS credits: 2
Applying of geometrical method for kinematical analysis of a planar mechanism; velocity and acceleration polygon methods, vectors loop method for planar kinematics; design of cam in a mechanism with imposed motion law of the follower;

USV.FIM.IM.DD.04.11
Strength of materials (2) (Spring/2)
5 hours per week; 14 weeks / 4th semester: 28C/28S/14L;
ECTS credits: 4

USV.FIM.IM.DD.04.12
Thermotechnics and thermal equipments (Spring/2)
4 hours per week; 14 weeks / 4th semester: 28C/14S/14L;
ECTS credits: 6

USV.FIM.IM.DD.04.13
Fluids mechanic and hydraulic equipments (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L; ECTS credits: 4
Introduction and fundamental concepts, Fluid statics, Fundamental concepts used in fluid flow analysis, The energy equation, Inviscid incompressible fluid flow, Inviscid compressible flow, The momentum equation, Dimensional analysis and similitude, Incompressible viscous flow, Definition and classification of hydro-pneumatic machines, Efficiency of hydro-pneumatic machines, The basic equation of turbo-machinery, Pumps and hydraulic turbines, Theoretical and experimental determination of the energy characteristic curves.

USV.FIM.IM.DD.04.14
Electrotechnics and electrical machines (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L; ECTS credits: 4
Periodic electrical signals, Electrical circuits, Laws, theorems and methods of analysis of electrical circuits, Magnetic circuits, Electrical circuit analysis, Electrical transformer, Asynchronous electric machine, DC electric machine, Synchronous electric machine.

USV.FIM.IM.DD.04.15
Electronics (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L; ECTS credits: 3
Introduction in Electronics; Concepts of semiconductor physics; PN junction; Semiconductor diodes; Types of diodes; Bipolar transistor; Field Effect Transistors; MOS transistor; Other devices with junctions; Optoelectronic semiconductor devices; Regime of switching semiconductor devices; Diode Circuits; Amplifiers; Reaction in amplifiers; Harmonic oscillators

USV.FIM.IM.DC.04.16
Physical education (4) Spring/2
1 hour per week; 14 weeks / 4th semester: 14S; ECTS credits: 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using operational means to organize your lesson to influence selective locomotor training and the athletic exercises of the body for exercise.

USV.FIM.II.DD.04.17
Practical training (Spring/2)
90 hours; 1.5 week; 14 weeks / 2nd semester; ECTS credits: 4
Identification of manufacturing processes; Identification of fabricated products and materials; Identification of main technological route; Identification of technological equipments; Consolidation of theoretical knowledge; Training of practical skills

Faculty of Mechanical Engineering
Mechatronics and Management

<table>
<thead>
<tr>
<th>Field of study</th>
<th>Engineering and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the educational program</td>
<td>Economic Engineering in Mechanical Field Undergraduate</td>
</tr>
</tbody>
</table>

4th YEAR

USV.FIM.IEDM.DS.07.02
Equipsments and Manufacturing Technologies 2 (Autumn/4)
4 hours per week; 14 weeks / 7th semester: 28C/28L; ECTS credits: 4

USV.FIM.IEDM.DC.07.06
Project management (Autumn/4)
3 hours per week; 14 weeks /1st semester: 14C/28S; ECTS credits: 4

Subject: English technical translations. Engineering economics and its role in the engineering curricula; taking a product from an idea to the marketplace. Industry trends and best practices in the full product lifecycle of mechanical systems. Basic mechanics terminology: auto basics; heavy machinery; hvac; collision repair(welding; frame repair; refinishing); shear stress and strain stress. Mechanical engineering industry economy and employment opportunities and market potentiality. Insurance. Accounting, analyzing balance sheets. Gleaning information from financial statements. Sample cover letters for a mechanical engineer/Job hunting via email.

USV.FIM.EDM.DS.08.09
MAINTENANCE MANAGEMENT (Spring/4)
3 hours per week; 14 weeks /2nd semester (spring): 14C/7S; ECTS credits: 3 semester: 14C/14S; ECTS credits: 3

Subject descriptive: This course familiarizes the students with the concept of management of the quality and its importance in the modern economy. It presents the definition of the quality, the concepts of total quality, management of quality and management of total quality, the concept of continuing improving, documents of the management of the quality, instruments of quality and management of the quality, systems of quality, certification of the quality of the products and processes, etc…

USV.FIM.EDM.DID.08.10
Modeling and simulation (Spring/4)
3 hours per week; 14 weeks /8th semester: 28C/14L; ECTS credits: 2; ECTS credits: 3 semester: 14C/14S; ECTS credits: 2

Modeling and simulation provides data pertinent for managerial or technical decision making, based on models (i.e. physical or mathematical representations of systems or processes) and simulations (i.e. implementations of a model over time). This results in about information systems or processes behavior without actual testing in real life, which can reduce cost and increase generality. In economy, subjects related to Linear programming are treated, while in engineering, problems related to contact mechanics are tackled using Matlab programming: elastic contact problem, slip and stick, elastic stresses, conjugate gradient methods, optimization methods, spectral methods and applications to convolution computation.

USV.FIM.EDM.DID.08.13
MANAGEMENT OF QUALITY (Spring/4)
3 hours per week; 14 weeks /2nd semester (spring): 28C/14S; ECTS credits: 3

Subject descriptive: This discipline familiarizes the students with the concept of management of the quality and its importance in the modern economy. It presents the definition of the quality, the concepts of total quality, management of quality and management of total quality, the concept of continuous improvement, the documents of the management of the quality, the instruments of quality and management of the quality. Finally, issues and aspects concerning the systems of quality, the certification of the quality of the products and processes are also presented

USV.FIM.MCT.DS.07.18
RELIABILITY AND MAINTENANCE (Autumn/4)
3 hours per week; 14 weeks /1st semester (autumn): 14C/7S; ECTS credits: 3